Social Icons

samedi 15 novembre 2014

Liposomal Formulation Administers Pharmaceuticals More Precisely

By Mayra Pierce


Nanotechnology is a branch of science that manipulates materials on a molecular and atomic level. Liposomes are artificially created microscopic bubbles composed of materials similar to human cell membranes called phospholipids, portions of which are alternately repelled or attracted to water. Liposomal formulation is a process that creates these structures for a more effective use in the delivery of medications.

First appearing during the 1960s, the importance of these tiny vesicular structures that enclose water-soluble molecules soon became apparent. Researchers and pharmacists became aware of their potential to deliver specific drugs used in the treatment of cancer and other serious diseases. The process encourages more accurate targeting of unhealthy cells and avoids problems associated with other types of administration.

The formulations avoid absorption problems and outcomes that are associated with direct IV or oral administration. Conventional systems of delivery can produce difficulty in accurately managing the consequences of harsh drug therapy, primarily because they concentrate toxicity in healthy organs, often producing a great deal of collateral damage. When the bubble-like liposomes containing medications are used, the release of those drugs is more readily controlled.

The drug molecules encased within each structure are suspended in water and surrounded by an artificially or naturally created membrane. The formulation of designed liposomes turns them into ideal mechanisms for hydrophilic drugs, or those that are attracted to and become suspended in water. When prepared according to current methods, the structures exist in two primary types, unilammelar or multilammelar. There are subcategories that include different sizes.

The liposomes are made to surround the medications with membranes, and when activated release those molecules into other cells. This can be done by fusing the layers, causing them to interact with adjacent human cells, and releasing medication in the process. Other activation strategies include using specific chemical reactions to encourage molecular diffusion. The end result is a controlled, steady delivery.

Not only can this process be more easily managed by physicians, but it leaves no residual toxins behind, and is compatible biologically with human cells. Comparatively recent developments in ultrasound technology use sound waves to activate these chemical invaders, increasing their strength in regions where it is most needed. Others are being administered via the respiratory system, where they are deposited in the lungs and slowly released.

It is still costly to manufacture these microscopic capsules for medical use. As continuing research produces a growing number of uses for this kind of nanotechnology, the overall expense will decline, but will not become cheap. Because this is relatively new technology in many ways, there are issues that still must be resolved. Some types of structures have experienced cellular leaking, and others have been affected by oxidation.

Like other technologies developed for medicine, liposomes have a growing commercial use. They are being touted as superior methods of delivering vitamin, mineral, and herb formulations, and some individuals today even create their own supplements. While those uses are controversial in some aspects, the creation of new medication delivery and activation systems continues to provide new hope for more effective treatments.




About the Author:



Aucun commentaire:

Enregistrer un commentaire

 

Sample text

Sample Text

 
Blogger Templates